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Abstract

The advent of computers in educational and psychological measurement has led to the need of

algorithms for optimal assembly of tests from item banks. This paper reviews the literature on

optimal test assembly and introduces the contributions to this special issue on the topic. Four

different approaches to computerized test assembly are discussed: heuristic-based test

assembly, 0-1 linear programming, network-flow programming, and an optimal design

approach. In addition, applications of these methods to a large variety of problems are

examined, including IRT-based test assembly, classical test assembly, assembling multiple

test forms, item matching, observed-score equating, constrained adaptive testing, assembling

test with item sets, item pool design, and assembling tests with multiple traits. The paper

concludes with a bibliography on optimal test assembly.
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Optimal Assembly of Educational and Psychological Tests, with a Bibliography

In his chapters on item response theory (IRT) in Lord and Novick (1968), Birnbaum

introduced a method of test assembly that was immediately acclaimed to be the proper

approach to the problem. The method involves the following three steps: First, a goal for the

test is formulated. Examples of possible goals are: admission decisions to an educational

program, diagnosis of the skills of the students in the lower tail of a population distribution, or

replacement of a test that has become obsolete by a parallel form. Second, the goal for the test

is used to set a target for the test information function. Examples of such targets are given in

Figure 1. Third, a test is assembled such that its information function matches the target. In

[Insert Figure 1 about here]

doing so,the fact is used that the item information functions are additive. Formal definitions of

the concepts of item and test information are given later in this paper.

In spite of its immediate recognition, it took a long time before Birnbaum's method

was actually used in the practice of test assembly. One reason for this delay was the fact that

the method could not be performed by hand. But even when computers became available, it

appeared difficult to formulate algorithms guaranteeing the optimality of a test assembled

from an item pool. Finally, and most importantly, in practice tests are seldom assembled only

to match a target for their information function but also have to meet large sets of

specifications dealing with such attributes as test content, item format, cognitive level, or

section lengths. In the early days of computerized testing it was not known how to implement

Birnbaum's method to meet such specifications as well.

However, the formal structure of the above test assembly problem is not unique and

can be found in many problems in industry, trade, commerce, and everyday life. Examples are

the problems of putting together an investment portfolio, composing a diet, drafting a

production schedule, packing a suitcase, or purchasing goods in a supermarket. The structure

shared by thes.e problems is the one of constrained combinatorial optimization (Nemhauser &

Wolsey, 1988; Rao, 1985; Wagner, 1972). Each problem belonging to this class is

characterized by the presence of a finite pool of "items" (e.g., stocks, nutrients, travel .

attributes) from which a combination has to be selected (e.g., portfolio, diet, contents of

suitcase). The task is to select a combination of items that is optimal with respect to one

attribute (e.g., maximum profit, maximum nutritional value, minimum weight) and at the

same time meets a variety of constraints on other attributes of the problem (e.g., budget
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available, minimum daily intake of vitamins and minerals, volume of suitcase). Problems of

combinatorial optimization have been studied in decision theory, operations research,

statistics, and management science.

To present test assembly as an example of constrained combinatorial optimization, an

important distinction is made between the following two types of test specifications:

1. Constraints. These specifications require a test attribute or a function of item

attributes to meet an upper and/or a lower limit. Constraints can be formulated

as mathematical (in)equalities.

2. Ob'ectives. These specifications require a test attribute or a function of item

attributes to take a minimum or maximum value. Objectives can be formulated

as mathematical functions that are to be optimized.

A test assembly program is now defined as a combination of an objective with a set of

constraints. An example of a small IRT-based test assembly program is given in Figure 2.

[Figure 2 about here]

Observe that this program has three different types of constraints:

I. Constraints on categorical item attributes (e.g., content classification; use of

graphics). These attributes partition the item pool, and the constraints hold for

the distribution of the items over this partition.

2. Constraints on quantitative item attributes (word counts; expected response

times). Constraints of this type require a function of the attributes (usually a

sum or an average) over a set of items to meet an upper or lower bound.

3. Constraints on dependencies between items. Examples are constraints

representing a relation of exclusion (mutually exclusive items) or inclusion

between the items (e.g., items presented as sets with a common stimulus).

In practice, test assembly problems may involve many more attributes than the five attributes

used in this example (for a catalogue, see van der Linden and Boekkooi-Timminga (1989).

Each possible objective involves its own optimal combination of items for a given

item pool. Test assembly programs can therefore optimize only one objective function at a

time.. On the other hand, the number of constraints is not limited by any a priori bound. The

only requirement is that the set of constraints leave a non-empty set of feasible solutions, that

is, collections of items meeting each of the constraints. In principle, a large set of constraints

can do so, but an inadvertently chosen small set can already overconstrain the problem and

lead to infeasibility. Problems of infeasibility in test assembly models are analyzed in
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Timminga and Adema (1996) and in the contribution by Timminga (1998) to this special
issue.

Often, the same test assembly problem can be formulated as a variety of programs. For

example, an important decision is whether or not to formulate a specification as an objective

or a constraint. If, for a given item pool, the maximum value of the test information function

at eo is approximately known, the objective function in Figure 2 can be replaced by a constraint

that requires information at this point to be larger than well-chosen lower bound. .This

replacement would allow another constraint to be formulated as the objective. Also, it is possible

to join several test specifications into a weighted combination of functions of different item

attributes and use this combination as an objective. Other choices emerge if a test assembly

program is translated into a mathematical optimization model; examples of such choices will be

met later in this paper.

Basic Approaches

To find a solution to a test assembly program, a computer algorithm is needed. Four

different approaches to solving test assembly programs will be discussed. Each of these

approaches is represented by one or two contributions to this special issue of the journal. The

first approach is based on the use of an intuitively attractive heuristic. This approach does not

involve any mathematical modeling of the assembly program but formulates an item-selection

rule that is built into a computer program. In the second and third approach, decision variables

for the selection of the items for the test are defined. The variables are used to model the

assembly problem as a mathematical programming problem with an objective function and

constraints. An algorithm is then used to solve the model for an optimal combination of

values for the decision variables. The fourth approach is based on the optimal design approach

in statistics. This approach does not involve any combinatorial optimization but calculates a

distribution of parameter values over a theoretic range that would yield a test with an optimal

value for an objective function. These four approaches, combinations of which are often used

in practice, are now discussed in more detail.

Heuristic-Based Test Assembly

Most heuristics in the literature on test assembly are based on sequential item

selection. That is, they select one item at a time, and the selection process is stopped when a
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sufficient number is reached. These heuristics also belong to a class known as greedy

heuristics in the optimization literature (e.g., Nemhauser & Wolsey, 1985, sect. II.5). The only

other class of heuristics that has received some interest in the test assembly literature are those

based on genetic algorithms (Michalewicz, 1994).

The basic nature of the greedy heuristic can be illustrated using the exemplary test

assembly program in Figure 2. Indices i=1,...,I and j=1..... n are used to denote the items in the

pool and in the test to be assembled, respectively. Thus, i, is the index in the pool of the jth

item in the test. Suppose j-1 items have been selected; the indices of these items form the set

Si { } . Therefore, R.; (1,...,MSki is the set of items in the pool from which the jth

item has to be selected. Finally, let L(8) denote Fisher's information in item i on the unknown

parameter 0 (for a formal definition of this measure, see Lord, 1980, chap. 5).

If the test has to have maximum information at 00, a greedy heuristic would select each

next item to have maximum information at this value. It would be based on the following

criterion:

ii max,{1,(00;te R.; } . (1)

To meet the categorical constraints in Figure 2, sets Ri could be defined for each of the classes

of the partition defined by the attributes. Item selection could then cycle along these classes

proportionally to the numbers needed from them. Constraints on quantitative attributes or

dependencies between items are more difficult to deal with in heuristics. The contributions by

Luecht (1998) and Sanders and Verschoor (1998) to this special issue are based on the use of

a greedy heuristic.

One of the first heuristics for IRT-based test assembly in the literature is given in

Ackerman (1989; see also Wang & Ackerman, 1998). The heuristic has been designed to

assemble a set of parallel test forms to meet a common target for their information functions

but will be discussed here for the case of assembling a single form. It is assumed that test

information is controlled at a series of discrete values ek, k=1,...,K, where T(Ok) is the target

value for the test information function at Ok. At each step, the heuristic first selects the value of k

for which the difference between current information and its target value is maximal. Then the

item with maximum information at this value is selected. Let kJ denote the index of the value of

8
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o used to select item j. Then, for j=1,...,n, the item selection process cycles through the following

two criteria:

kJ a- maxs{ T(6s) I Ii (Os); s=1,...,K) , (2)
ieSj4

maxi{Ii( Ok); te KJ}. (3)

A problem with Ackerman's heuristic is that the test information function is likely to

overshoot its target for several 0 values--a result typical of greedy heuristics. Luecht and Hirsch

(1992) present a heuristic of a more tempered nature. Like (2), their heuristic is based on the

difference between current information at Ok and its target value. However, it divides the

difference by the remaining number of items to be selected, n-j+1:

8 j(01()-=[T(ok)- / WOO] (n- j+1)
ieSj_i

(4) .

The quantities 4(0k) are used as target values for the informaticin function in the selection of the

jth item:

ij mind j(ek) WOO 8[4)01; t E Rj (5)
k=1

where the weights wi(0k) in (5) are added to promote the selection of items contributing most at

0 values with large gaps between item information values and the targets. A more detailed

introduction to this heuristic and the way it deals with various types of constraints on item

selection is given in the contribution by Luecht (1998) to this special issue.

The heuristic by Swanson and Stocking (1993) supposes that all test specifications

have been formulated as constraints. The heuristic minimizes a weighted sum of expected

deviations from the constraints. Constraint 5 in Figure 2 is taken as an example, where wi is

used to denote the number of words in item i. If the jth item is selected and item te Rj is the

candidate, the expected number of words in the total test is defined as:

9
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(6)

The first term in (6) is equal to the number of words in the j-1 items already selected, the

second term is the number of words in candidate item t, and the last term is equal to n-j times

the average number of words in the set of remaining items in set R. The expression in (6) is

thus derived under the assumption of choosing item t and random sampling of the rest of the

items from set Rj\{t}.

The Swanson-Stocking heuristic calculates these expected values for all constraints. It

then calculates the extent to which these expectations violate the bounds in the constraints.

Finally, a weighted sum of the deviations is calculated, and the item with the smallest value

for the weighted sum is selected. The use of weights not only allows us to express preferences

for constraints but is also necessary to compensate for scale differences between attributes and

bounds.

As already noted, the only addition to the class of greedy heuristics for test assembly

are those based on genetic algorithms (Verschoor, 1998). Genetic algorithms do not select

items sequentially. They start with a pool of candidate solutions for the full test that are

improved in a probabilistic way simulating an evolutionary process. A key feature of genetic

algorithms is that they have a nonzero probability of backtracking. Greedy heuristics, on the

other contrary, make choices that are locally optimal but may end up with solutions that are

not globally optimal. These heuristics are therefore often followed by a second process in

which some of the items in the solution are replaced by alternatives. For example, Ackerman

(1989) recommends swapping items between multiple forms to improve the extent to which

they are parallel. Likewise, Swanson and Stocking (1993) recommend a second stage in which

items whose removal would result in a reduction of the weighted sum of deviations are

replaced by more promising ones.

0-1 Linear Programming

As already noted, the critical difference between this approach and the previous one is

the definition of decision variables to assign items from the pool to the test. These variables

are used to model the objective as a mathematical function and the constraints as (in)equalities

to be imposed on its optimization. An example is formulated for the test assembly program in

1 0
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Figure 2.

Let x,, i=1,...,I, be the variable to represent the decision whether (xi=1) or not (xi=0) to

assign item i from the pool to the test. The sets of indices of the items in the pool on

knowledge of fact, applications, and with graphics will be denoted as Vk, Va, and Vg,

respectively. In addition to the quantitative attribute wi for the number of words in item i, the

attribute r, is used for the expected response time on item i.

The model is as follows:

maximize E I; WO Xi (maximum information at eo) (7)
i=1

subject to

xi 510 , (knowledge of facts) (8)
iEvk

E
;Eva

(applications) (9)

/ XI = 5, (graphics) (10)
1E V g

xi=25, (test length) (11)
i=I

E IN; 1,500,
i=1

(word counts) (12)

/11 xi 60, (expected response times) (13)
i=1

X64+X65 < 1 , (mutually exclusive items) (14)
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(range of variables) (15)

Since the variables are zero-one, the sum in (7) is the information in the test at 00. Likewise,

the sums in (12) and (13) are the total number of words and the expected response time for the

test, respectively. In (8)-(10), the sums of variables are the numbers of items in the test form the

various sets; in (15) this sum represents the length of the test.

The expressions in (7)-(14) are linear in the variables. The constraints in (11) are

technical constraints that define the range of the variables. The optimization problem therefore

belongs to 0-1 linear programming (LP). Optimal values for the decision variables x,, i=1,...,I,

can be found using standard LP software or a dedicated test assembly software package such

as ConTEST (Timminga, van der Linden & Schweizer, 1996). Exact solutions to 0-1 LP

problems are obtained through a complete branch-and-bound (B&B) search. Such searches are

known to be NP-hard; that is, their solution time is not bounded by a polynomial of the size of

the problem. Exact solutions of large problems may therefore require an excessive amount of

time. However, solutions with values for the objective function differing from the optimum by

a predetermined, negligibly small factor can easily be obtained for item pools of a realistic

size. An algorithm for doing so is the described in by Adema, Boekkooi-Timminga and van

der Linden (1991; see also Timminga, van der Linden & Schweizer, 1996, sect. 6.6.5). The

algorithm fixes some of the decision variables using a result in Crowder, Johnson and Padberg

(1983). In addition, the value of the objective function in the solution to the relaxed problem,

that is, with the 0-1 variables replaced by variables that can take values in [0,1], is employed

to derive a stopping rule for a B&B search for the solution in the original problem. Fan (1997)

used the algorithm to assemble six parallel forms of 60 items, each with approximately 200

constraints, from a pool of nearly 3,000 items within 11 mins.

To the knowledge of the author, the first to apply linear programming to model a

problem in testing was Votaw (1952). Feuermann and Weiss (1973) used the technique to

solve a test assembly program. The application of LP linear programming to test assembly

was also alluded to in Yen (1983). A seminal paper was the one by Theunissen (1985) who

modeled Birnbaum's problem 'of a test to meet a target information function as a 0-1 LP

problem. This paper stimulated others to use the same methodology to model a large variety

of other test assembly problems (see the papers by Adema, Baker, Boekkooi-Timminga,

Boomsma, de Gruijter, Gademann, Glas, Kester, Razoux Schultz, Timminga, and van der

12
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Linden in the bibliography at the end of this paper). In this special issue, the paper by van der

Linden and Reese (1998) demonstrates the use of 0-1 LP to build item selection constraints

into an algorithm for computerized adaptive testing.

Network-Flow Programming

Integer programming problems are defined as LP problems with decision variables that

can take a larger range of integer values than just the values of 0 and 1. In special cases,

integer problems take the form of a network-flow or transportation problem. If so, quick

solutions to large problems are possible. An example of a problem with a network-flow

structure is given by the directed graph in Figure 3. Nodes Si on the left-hand side are supply

[Figure 3 about here]

nodes; nodes Di on the right-hand side demand nodes. The directed arcs or arrows indicate a

flow or transportation from the supply to the demand nodes. For each arc there is a decision

variable xi) denoting the units of flow from node Si to D. The constraints in a network-flow

problem deal with the numbers of units available at the supply nodes, the bounds on the

numbers needed at the demand nodes, or the costs associated with a units of flow along the

arc from i to j, cu. If the number of supply nodes is equal to the number of demand nodes and

the decision variables take only the values 0 and 1, network-flow problems are known as

assignment problems. Also, transhipment nodes can be added between the supply and demand

nodes to accommodate a larger class of problems. Transshipment nodes have both demand

and supply constraints associated with them.

An important result in network-flow programming is that among the solutions to the

relaxed or continuous version of the problem there is always one with integer values for the

variables. This solution is found by the well-known simplex algorithm in LP. Moreover, the

structure of the network-flow problems allows for an efficient implementation of the simplex

algorithm resulting in solution times for large problems that seldom take more than seconds

on a personal computer.

Some test assembly problems can be formulated as network-flow problems. For

example, suppose that for i=1,...,ni supply "nodes Si represent the items in the example in

Figure 2 that measure knowledge of facts whereas for i=n1+1,...,I, they represent the items that

do not measure at this cognitive level. In addition, demand nodes Di, j=1,2, represent the sets

of items needed in the test form that do and do not measure knowledge of facts, respectively.

The decision variables xki denote whether (x1i=1) or not (xkl=0) item i is shipped to the part of

3
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the test represented by demand node D. Finally, the "cost" of shipping item i to Di is defined

as its information at 0o, Ii(0k) (changing the problem from a minimization into a maximization

problem). The test assembly problem consisting of the objective and the first constraint in Figure

2 can be modeled as the following network-flow problem:

maximize I I1(0o)xii (maximum information at 0o) (16)
i=1

subject to

2
E i=1,...,I,

ni
xii=10

i=1

Xi2=15
i=n+1

E (0,1), i=1,...,I, j=1,2,

(supply at S ,...,S1)

(demand at Di)

(demand at D2)

(17)

(18)

(19)

(range of variables) (20)

where x1 1=0 for i>ni and x12=0 for i<ni.

Most test assembly problems with categorical attributes can be modeled as network-

flow problems with demand nodes representing classes of items defined by combinations of

attributes. Since these classes need not form a partition of the item bank and transshipment

nodes can be added, flexibility is large. The fact that realistic problems typically may involve

thousands of variables (number of items times number of demand nodes) need not bother us;

such network-flow problems can generally be solved quickly.

However, problems with quantitative attributes are more difficult to model. One

approach is to embed the network-flow problem in a heuristic, for example, using Lagrangian

relaxation. In this technique, all quantitative constraints are removed from the constraint set

and added to the objective function as penalty terms times a Lagrange multiplier. For

14
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example, Constraint 5 in Figure 2 is added to the objective function in (16) as:

maximize E Lob) xij- ko,5oo -E wi xi). L. (21)
i=I

A solution is typically found cycling through the process of finding a suitable value for X,

solving the network-flow problem, and improving on the current value of X until a satisfactory

result is obtained. Results are usually still quick and near optimal but may suffer from constraint

violation.

Test assembly problems with constraints representing dependencies between items in

the pool can not always be formulated as network-flow problems either. However, the same

approach of embedding a reduced problem in a larger heuristic can be followed to attack such

problems.

An excellent review of network-flow programming models with Lagrangian relaxation

for test assembly is given in Armstrong, Jones and Wang (1995). Nearly all of their empirical

examples have calculation times less than 2 mins. In the contribution by Armstrong, Jones and

Kunce (1998) to this special issue, the same technique is used to assemble a series of parallel

test forms. Other applications are given in the papers by Armstrong et al., Boomsma, and

Veldkamp in the bibliography.

Optimal Design Approach

The final approach reviewed here is based on the theory of optimal experimental

design developed in statistics (e.g., Fedorov, 1972). One of the first problems addressed in

optimal design theory was the designing of an experiment for estimating the parameters in a

linear regression model. The standard approach in optimal design theory is to choose a set of

design points (=grid of values for the independent variables) and find an experimental design

(=distribution of observations over these points) that would result in optimal accuracy of the

parameter estimates. Since most experiments have multiple parameters, the criterion of

optimality is typically defined on the variance-covariance matrix of the estimators. Popular

functions are the determinant, the trace, and the eigenvalue of the this matrix; solutions with

optimal values for these criteria are known as D-, A-, and L-optimal, respectively.

Since IRT models can be viewed as regression models, it seems obvious to apply the

techniques of optimal design to parameter estimation problems in IRT. Applications consists
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of optimal design of experiments for estimating the item as well as the examinee parameters.

The latter is the problem of optimal test design. A solution to the problem is a joint

distribution of the item parameter values with optimal accuracy for the ability estimator.

However, unlike standard regression models, IRT models are nonlinear and have unobserved

independent values. How to deal with these issues is explained in the reviews of optimal

design approaches to IRT by Berger (1997) and van der Linden (1994b). The contribution by

Berger (1998) to this special issue of the journal applies optimal design techniques to tests

with dichotomous and polytomous item formats. Other applications of optimal test design are

given in the papers by Berger et al. in the bibliography.

Discussion

Important yardsticks to evaluate the appropriateness of the various approaches to test

assembly problems are: (I) easiness of modeling the problem; (2) optimality of the solution;

(3) possibility of constraint violation; and (4) computer time needed. A heuristic approach is

generally quicker than all other approaches. However, its solutions are mostly suboptimal to

an extent that remains unknown and may violate some of the constraints. As already observed,

the use of heuristics does not involve any modeling but for new problems it usually takes a

considerable amount of time to adjust the heuristic, for example, to find best weights if the

objective is to minimize a sum of weighted deviations form a large set of constraints.

The strong advantage of the 0-1 LP approach is its flexibility. Most assembly problems

can be modeled using 0-1 integer variables. Also, modeling is the only thing needed; once a

model has been formulated, it is not necessary to design a heuristic or adjust software.

Constraint violation is impossible. However, the approach does have an important tradeoff

between the speed and optimality of its solutions. Exact solutions for larger problems are not

possible in realistic time, but if an appropriate search algorithm is used, near-optimal solutions

to practical problems, with values for the objective function 1-2% from its optimum, say, are

often possible in minutes.

The power of network-flow programming is its speed. If the test assembly problem can

be formulated to have the special structure of a network-flow problem, exact solutions to large

problems are possible in seconds. If not, the method has to be embedded in a heuristic

approach. Typically, solutions then still take seldom more than a few minutes but are near

optimal and may show occasional constraint violation.

The optimal design approach differs from the others in several aspects. Its intention is
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to calculate the best distribution of the item parameters values over their theoretical range

given a criterion of optimality. Other test specifications than this objective are generally

ignored. Optimal design is thus not a method for assembling a test from an finite, existing

pool of items. However, its optimal distribution of item parameter values should be

approximated in practice. In principle, it is even possible to build this distribution as a target

in a 0-1 LP or network-flow model for test assembly.

Applications

A large variety of test assembly problems have been attacked using the approaches discussed

in this paper. Applications range from the problem of assembling a set of multiple test forms

simultaneously to observed-score equating and constrained adaptive testing. The most

important results are now reviewed.

Multiple forms. The first extension of the problem of finding an optimal single test

form was the one of assembling a set of parallel forms. An obvious approach to the problem

of multiple-form assembly may seem to apply the above approaches sequentially until the

desired number of forms Is obtained. However, this approach would select the best items first

and show a decrease in the qualify of the test forms. Therefore, simultaneous assembly of

multiple test forms is a better alternative.

As shown in Boekkooi-Timminga (1987a), a simultaneous approach involves

replacing the decision variables in the model in (7)-(15) by variables xif denoting the decisions

whether (xif=1) or not (xif=0) item i in the pool will be assigned to form f=1,...,F. In addition,

a set of constraints has to be added to prevent items from being assigned to more than one

form:

y )(if
f=1

(22)

Because the number of decision variables is equal to the size of the item pool times the

number of forms, the approach is only possible for smaller problems. All developments for

realistic multiple-form problems therefore have heuristic aspects.

Adema (1992b) designed an approach in which the problem of assembling a set of

parallel forms simultaneously is replaced by a series of computationally less intensive two-
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form problems. A generalization of the approach to any set of test forms is given in van der

Linden and Adema (1998). Other methods of assembling multiple test forms are proposed in

Adema (1992), Boekkooi-Timminga (1990a; 1990b) and van der Linden and Carlson (1997).

Solutions based on item matching are given Armstrong, Jones, Li and Wu (1996), Armstrong,

Jones and Wu (1992) and in the contribution by Armstrong, Jones and Kunce (1998) to this

special issue. The principle of item matching used in the Armstrong et al. papers is explained

below.

Item sets. A popular testing format is the one with sets of items related to a common

.stimulus, for example, a text passage in a reading test or a description of an experiment in a

physics test. If each item set in the pool remains intact if selected for a test, an obvious

approach is to attach aggregated item attributes as descriptors to the item sets and model the

problem using 0-1 decision variables for the selection of sets. The problem becomes more

complicated though if the number of items to be selected per set has to be smaller than the

number in the pool, in particular if the selection also has to satisfy separate sets of constraints

on item, test, and stimulus attributes.

A flexible solution is possible using different decision variablei for the stimuli and the

items (van der Linden, 1992). Let s=1,..,S denote the stimuli in the pool and the

items nested under stimulus s. These indices can be used to define 0-1 decision variables zs

and xis for the selection of the stimuli and items, respectively. The same variables are then

available to model the various specifications at item, test, and stimulus level. They also allow for

the simultaneous selection of stimuli and items provided the following constraint set is added to

the model

Is

Exis ns zs =0, s=1,...,S.
is=1

(23)

The purpose of these constraints, which can be replaced by inequalities, is not only to keep the

selection of stimuli and items consistent but also to set the number of items selected per set

equal to ns.

Classical test assembly. A basic problem in test assembly based on classical item and

test parameters is that, unlike 1RT, no meaningful test parameters can be found that are

additive in the items. In particular, test reliability is a nonlinear function of the covariances
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between all pairs of items, and, as a consequence, an attempt to assembly a test with

maximum reliability may involve a procedure with endless backtracking.

The problem of nonlinearity is illustrated for the maximization of Cronbach's alpha.

Adding decision variables, the objective function is

cq. xi
n

maximize a =
1=1

1>
n-1

Pi ai Xi
i=1

(24)

where a; and pi are the item standard deviation and item-test correlation, respectively. However,

if the test length, n, is fixed, the objective is equivalent to the one of minimizing the ratio in the

second factor. Also, both the numerator and denominator of this ratio are linear in the decision

variables. Adema and van der Linden (1989) presented an LP solution in which the numerator is

maximized and the denominator is constrained to be lower than a well-chosen small bound, c:

maximize I PiGi Xi
1=1

subject to

Ea2 c

(25)

(26)

Simulation studies with this linearized version of Cronbach's alpha showed near-optimal

results under a large variety of conditions. Armstrong, Jones and Wang (1994) extended the

approach by building the constraint in (26) into the objective function in (25) using

Lagrangian relaxation and embedding the new objective function into an algorithm that

optimized the choice of c.

Item matching. Problems of item matching arise if a set of test forms has to be

assembled that are indistinguishable item by item. The first application of optimal test

assembly methods to such problems was the use of 0-1 LP to find optimally matched test

13
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halves for estimating split-half reliability (van der Linden and Boekkooi-Timminga, 1988).

The same problem has been addressed using network-flow programming in Armstrong and

Jones (1992) and in the contribution by Sanders and Verschoor (1998) to this special issue

who use a greedy heuristic.

A related problem is the one of assembling a set of test forms to be parallel to an old

form addressed in Armstrong, Jones, Li and Wu (1996), Armstrong, Jones and Wu (1992) and

in the contribution by Armstrong, Jones and Kunce (1998) to this special issue. Network-flow

programming is a natural approach to this problem because the items in the reference test can

serve as demand nodes to which items for the set of forms are shipped at costs that are a

function of the match between the items and the target (see Figure 3). Once the items have

been shipped, a heuristic is used to assign the items from the demand nodes to the individual

test forms.

Observed-score equating. In large-scale testing programs old test forms are

periodically replaced by new ones. The traditional approach is to assemble a new form, pretest

its items, and equate the observed scores on the new form to those on the old form. An

alternative would be to assemble the new form to have the same observed-score distribution

as the old form for a population of examinees. The idea was explored in van der Linden and

Luecht (1996) using an 0-1 LP model that matched both the test information and the test

characteristic function of the new form to those of the old form, the idea being that these two

functions would equate the error- and true-score distributions of the new form, and thereby its

observed-score distribution. The same idea is used in Glas (1988) to equate cutscores on a

new and old form and in the contribution by Armstrong, Jones and Kunce (1998) to this

special issue of the journal.

In a later paper (van der Linden & Luecht, in press), it is proved that the observed-

score distributions on two test forms are equal if and only if

for r=1,...,n,
i=i i=1

(27)

where P(0) and P(0) are the response functions of item i and j in the new and old form,

respectively. tie result is based on a series expansion and in practice only a'few lower-order

equalities need to be met to get good results. Since the equalities are linear in the items, they can

easily be built in a 0-1 LP model for assembling the new form. An empirical example for the
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LSAT gave excellent results for a model that only had the equalities in (27) for r=1,2,3.

Constrained adaptive testing. Though the development of computerized adaptive

testing was motivated by the idea of maximizing the statistical precision of ability estimation,

real-life applications have shown the need of such tests to keep the content specifications

constant across examinees as well. A 0-1 LP approach to adaptive testing in which the

information in the test is maximized at the current ability estimate subject to a large set of

constraints is presented in the contribution by van der Linden and Reese (1998) to the special

issue of this journal. The algorithm starts with the on-line assembly of a full test that meets

each of the constraints and is optimal at the initial ability estimate. Each next step, the most

informative item from the test is administered and both the ability estimate and set of

constraints are updated. An example for the LSAT shows that several hundred constraints can

be built into the item selection procedure without sacrificing any precision of the ability

estimator. A comparable approach based on network-flow programming was developed

independently in Cordova (1997). An application of the algorithm with response-time

constraints used to control adaptive tests for differential speededness between examinees is

presented in van der Linden, Scrams and Schnipke (submitted).

Assembling multidimensional tests. For larger item pools, a potential problem with the

use of the simple logistic IRT models for item calibration is violation of their assumption of

unidimensionality. If so, a multidimensional IRT model has to be used. However, for a model

with multiple ability parameters test information is not a scalar, and the variance-covariance

matrix of the estimators has to be addressed directly. Test assembly can then no longer follow

Birnbaum's method based on a target for the test information function.

A 0-1 LP-based algorithm for multidimensional test assembly is given in van der

Linden (1996). The model is based on a target for the variance functions of the ability

estimators using the fact that, though not linear in the items themselves, these functions are

built up of linear expressions. In the model, some of these expressions are optimized, others

constrained. Repeated application of the model systematically varying the bounds in the

constraints can be used to find a solution fitting the targets for the information functions best.

An example for an item pool from the ACT Assessment Program yielded test forms meeting a

uniform target for the variance functions over the ability space. A version of the approach

with Lagrangian relaxation is given in Veldkamp (submitted).

Item pool design. The final application of optimal assembly methods in this review is

the one to the problem of assembling an item pool. The importance of this application lies in
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the fact that item pools in testing programs are not always on target. As a consequence, some

portions of the item pool are quickly depleted whereas others may have items that are never

used.

The problem of item pool design has been explored in Boekkooi-Timminga (1991).

Her approach starts with a tentative blueprint for the item pool from which test forms are

assembled to find out what types of items are over and underrepresented. The results are then

used to adjust the blueprint. Another approach is followed in van der Linden, Veldkamp and

Veldkamp (in preparation). The decision variables in their integer programming model

represent the numbers of items in the pool needed and optimal values for the variables are

found using an objective function that minimizes an empirical estimate of the costs involved

in item writing.

Concluding Remark

Modern measurement is characterized by the use of statistical models for the

quantification of educational and psychological variables. As in any other quantitative field,

an obvious next step is the application of optimization techniques to maximize the utility of

the models. This special issue reviews a variety of applications of such techniques to the

problem of optimal test assembly and presents several new applications. The mathematical

techniques involved are neither new nor applied for the first time. However, what is new is the

creativity involved in analyzing test assembly problems and structuring them such that the

optimization techniques apply. Since most results are of recent date, it is anticipated that more

will follow.
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Figure Captions

Figure 1. Examples of targets for test information functions (1. Selection decision with cut

score 00 ; 2. Diagnostic test for low ability examinees; 3. Information function of an

old test to be matched)

Figure 2. Example of a test assembly model or program.

Figure 3. A directed graph of a network-flow programming problem
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Maximize test information at cut score

subject to

1. No more than 10 items on knowledge of facts;

2. At least 10 items on applications;

3. Five items with graphics;

4. Test length equal to 25 items;

5. Total number of words in test not larger than 1,500;

6. Total expected response time not larger than 60 minutes;

7. Items 64 and 64 not simultaneously in the test.
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